Hazard Alert Code: HIGH

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 1 of 14

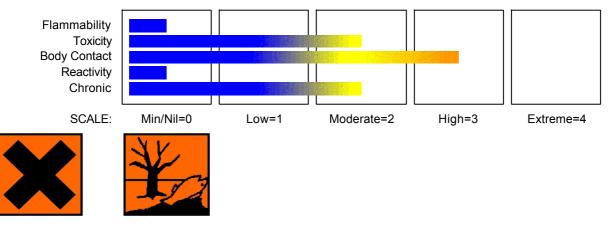
Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME Dunlop Ultra-White Grout

PRODUCT USE

Cement based grouting material for wall and floor applications.

SUPPLIER


Company: Ardex Australia Pty Ltd Address: 20 Powers Road Seven Hills NSW, 2147 Australia Telephone: 1800 224 070 Emergency Tel:**1800 222 841** Fax: +61 2 9838 7817

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE

HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

CHEMWATCH HAZARD RATINGS

RISK

- Irritating to respiratory system and skin.
- Risk of serious damage to eyes.
- May cause SENSITISATION by skin contact.

SAFETY

- Do not breathe dust.
- Avoid contact with skin.
- Avoid contact with eyes.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP

Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 2 of 14 Section 2 - HAZARDS IDENTIFICATION

Very toxic to aquatic organisms, may cause long- term adverse effects in the aquatic environment.

- Inhalation may produce health damage*.
- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- Possible respiratory sensitiser*.
- * (limited evidence).

Wear suitable gloves.

- Wear eye/face protection.
- Use only in well ventilated areas.
- Keep container in a well ventilated place.
- Do not empty into drains.
- To clean the floor and all objects contaminated
- by this material, use water and detergent.
- This material and its container must be
- disposed of in a safe way.
- In case of contact with eyes, rinse with plenty of water and contact Doctor or Poisons Information Centre.

• If swallowed, IMMEDIATELY contact Doctor or Poisons Information Centre. (show this container or label).

- Use appropriate container to avoid environmental contamination.
- Avoid release to the environment. Refer to
- special instructions/Safety data sheets.
- In case of accident by inhalation: remove casualty to fresh air and keep at rest.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
portland cement	65997-15-1	40-60
inorganic filler		30-60
other nonhazardous ingredients		10-40
hydrophobing agent		0.5-2

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP

Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 3 of 14 Section 4 - FIRST AID MEASURES

occasionally lifting the upper and lower lids.

- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

- For acute or short term repeated exposures to iron and its derivatives:
- Always treat symptoms rather than history.
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex)are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology].

For acute or short term repeated exposures to dichromates and chromates:

- Absorption occurs from the alimentary tract and lungs.
- The kidney excretes about 60% of absorbed chromate within 8 hours of ingestion. Urinary excretion may take up to 14 days.
- Establish airway, breathing and circulation. Assist ventilation.
- Induce emesis with Ipecac Syrup if patient is not convulsing, in coma or obtunded and if the gag reflex is
 present.
- Otherwise use gastric lavage with endotracheal intubation.
- Fluid balance is critical. Peritoneal dialysis, haemodialysis or exchange transfusion may be effective although available data is limited.
- British Anti-Lewisite, ascorbic acid, folic acid and EDTA are probably not effective.
- There are no antidotes.
- Primary irritation, including chrome ulceration, may be treated with ointments comprising calcium-sodium-EDTA. This, together with the use of frequently renewed dressings, will ensure rapid healing of any ulcer

Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 4 of 14 Section 4 - FIRST AID MEASURES

which may develop.

The mechanism of action involves the reduction of Cr (VI) to Cr(III) and subsequent chelation; the irritant effect of Cr(III)/ protein complexes is thus avoided. [ILO Encyclopedia]

[Ellenhorn and Barceloux: Medical Toxicology].

For acute or short-term repeated exposures to highly alkaline materials:

• Respiratory stress is uncommon but present occasionally because of soft tissue edema.

• Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.

- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

• Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.
- Supportive care involves the following:

• Withhold oral feedings initially.

- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing

(dysphagia). SKIN AND EYE:

• Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology].

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD

• Non combustible.

• Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of: sulfur oxides (SOx), silicon dioxide (SiO2), metal oxides. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 5 of 14 Section 5 - FIRE FIGHTING MEASURES

May emit poisonous fumes. May emit corrosive fumes.

FIRE INCOMPATIBILITY

None known.

HAZCHEM

None

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- · Control personal contact with the substance, by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP

Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 6 of 14 Section 7 - HANDLING AND STORAGE

- Use good occupational work practice.
- · Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

SUITABLE CONTAINER

- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY

- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.

STORAGE REQUIREMENTS

- Keep dry.
- Store under cover.
- Store in a well ventilated area.
- Store away from sources of heat or ignition.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- +: May be stored together
- O: May be stored together with specific preventions
- X: Must not be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

EMERGENCY EXPOSURE LIMITS

MaterialRevised IDLH Value (mg/m3)portland cement|137635,000

Revised IDLH Value (ppm)

MATERIAL DATA

DUNLOP ULTRA-WHITE GROUT: None assigned. Refer to individual constituents.

PORTLAND CEMENT:

for calcium silicate:

containing no asbestos and <1% crystalline silica

ES TWA: 10 mg/m3 inspirable dust

TLV TWA: 10 mg/m3 total dust (synthetic nonfibrous) A4

Although in vitro studies indicate that calcium silicate is more toxic than substances described as

"nuisance dusts" is thought that adverse health effects which might occur following exposure to 10-20 mg/m3

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 7 of 14 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

are likely to be minimal. The TLV-TWA is thought to be protective against the physical risk of eye and upper respiratory tract irritation in workers and to prevent interference with vision and deposition of particulate in the eyes, ears, nose and mouth.

NOTE: This substance has been classified by the ACGIH as A4 NOT classifiable as causing Cancer in humans. For calcium oxide:

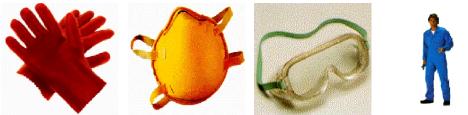
The TLV-TWA is thought to be protective against undue irritation and is analogous to that recommended for sodium hydroxide.

For aluminium oxide:

The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.

[Documentation of the Threshold Limit Values], ACGIH, Sixth Edition.

The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of $4.0 \ \mu m \ (+-) \ 0.3 \ \mu m$ and with a geometric standard deviation of $1.5 \ \mu m \ (+-) \ 0.1 \ \mu m$, i.e., generally less than 5 μm .


for chrome(VI) containing substances:

Some jurisdictions require that health surveillance be carried on workers occupationally exposed to inorganic chromium. Such surveillance should emphasise

- demography, occupational and medical history and health advice
- physical examination with emphasis on the respiratory system and skin
- weekly skin inspection of hands and forearms by a "responsible person".

Portland cement is considered to be a nuisance dust that does not cause fibrosis and has little potential to induce adverse effects on the lung.

PERSONAL PROTECTION

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A
 written policy document, describing the wearing of lens or restrictions on use, should be created for each
 workplace or task. This should include a review of lens absorption and adsorption for the class of
 chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in
 their removal and suitable equipment should be readily available. In the event of chemical exposure, begin
 eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the
 first signs of eye redness or irritation lens should be removed in a clean environment only after workers
 have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national
 equivalent].

HANDS/FEET

■ NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 8 of 14 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and

has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

• Neoprene rubber gloves.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- fluorocaoutchouc.
- polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

•Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP

Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 9 of 14 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Welldesigned engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Coloured powder; insoluble in water.

PHYSICAL PROPERTIES

Does not mix with water. Alkaline.

State

Melting Range (°C) Boiling Range (°C) Flash Point (°C) Decomposition Temp (°C) Autoignition Temp (°C) Upper Explosive Limit (%) Lower Explosive Limit (%)

Volatile Component (%vol)

Divided Solid Not Available Not Applicable Not Applicable Not Available Not Available Not Applicable Not Applicable

Not Applicable

Molecular Weight Viscosity Solubility in water (g/L) pH (1% solution) pH (as supplied) Vapour Pressure (kPa) Specific Gravity (water=1) Relative Vapour Density (air=1) Evaporation Rate Not Applicable Not Applicable Immiscible Not Available Not Available Not Applicable Not Available Not Applicable

Not Applicable

Section 10 - STABILITY AND REACTIVITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 10 of 14 Section 10 - STABILITY AND REACTIVITY

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (eg. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

EYE

■ If applied to the eyes, this material causes severe eye damage.

SKIN

This material can cause inflammation of the skin on contact in some persons.

The material may accentuate any pre-existing dermatitis condition.

Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation.

Four students received severe hand burns whilst making moulds of their hands with dental plaster substituted for Plaster of Paris. The dental plaster known as "Stone" was a special form of calcium sulfate hemihydrate containing alpha-hemihydrate crystals that provide high compression strength to the moulds. Beta-hemihydrate (normal Plaster of Paris) does not cause skin burns in similar circumstances.

Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts.

Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Inhalation may result in chrome ulcers or sores of nasal mucosa and lung damage.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result

in excessive exposures.

Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 11 of 14 Section 11 - TOXICOLOGICAL INFORMATION

Effects on lungs are significantly enhanced in the presence of respirable particles.

CHRONIC HEALTH EFFECTS

■ Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population.

Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm.

Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos.

In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae (e.g., rhodonite)

In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low. Four grades of wollastonite of different fibre size were tested for carcinogenicity in one experiment in rats by intrapleural implantation. There was no information on the purity of the four samples used. A slight increase in the incidence of pleural sarcomas was observed with three grades, all of which contained fibres greater than 4 um in length and less than 0.5 um in diameter.

In two studies by intraperitoneal injection in rats using wollastonite with median fibre lengths of 8.1 um and 5.6 um respectively, no intra-abdominal tumours were found.

Evidence from wollastonite miners suggests that occupational exposure can cause impaired respiratory function and pneumoconiosis. However animal studies have demonstrated that wollastonite fibres have low biopersistence and induce a transient inflammatory response compared to various forms of asbestos. A two-year inhalation study in rats at one dose showed no significant inflammation or fibrosis.

Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis.

Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO].

Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust levels.

Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity.

Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996.

Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk. Iron overload in men may lead to diabetes, joint inflammation, liver cancer, heart irregularities and problems with other organs.

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 12 of 14 Section 11 - TOXICOLOGICAL INFORMATION

TOXICITY AND IRRITATION

DUNLOP ULTRA-WHITE GROUT: Not available. Refer to individual constituents.

PORTLAND CEMENT:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

PORTLAND CEMENT:

Marine Pollutant

Yes

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For Metal:

Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.

Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities.

Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water.

Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may

Chemwatch Material Safety Data Sheet (REVIEW) Issue Date: 17-Sep-2013 A317LP

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 13 of 14 Section 12 - ECOLOGICAL INFORMATION

introduce new or magnified effects. DO NOT discharge into sewer or waterways.

Marine Pollutant		Yes		
Ecotoxicity Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
portland cement	No Data Available	No Data Available	No Data Available	No Data Available

Section 13 - DISPOSAL CONSIDERATIONS

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM: None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: ADG7, IATA, IMDG

Section 15 - REGULATORY INFORMATION

Indications of Danger:

- N Dangerous for the environment
- Xi Irritant

POISONS SCHEDULE None

REGULATIONS

Regulations for ingredients

Hazard Alert Code: HIGH

CHEMWATCH 4861-61 Version No:2.1.1.1 Page 14 of 14 Section 15 - REGULATORY INFORMATION

portland cement (CAS: 65997-15-1) is found on the following regulatory lists;

"Australia Exposure Standards", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals"

No data for Dunlop Ultra-White Grout (CW: 4861-61)

Section 16 - OTHER INFORMATION

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 17-Sep-2013 Print Date: 30-Sep-2013

This is the end of the MSDS.